Magnetic-field-induced nematic-nematic phase separation and droplet formation in colloidal goethite.

نویسندگان

  • E van den Pol
  • A A Verhoeff
  • A Lupascu
  • M A Diaconeasa
  • P Davidson
  • I Dozov
  • B W M Kuipers
  • D M E Thies-Weesie
  • G J Vroege
چکیده

We demonstrate the suitability of polarization microscopy to study the recently discovered (parallel) nematic-(perpendicular) nematic phase separation. This novel type of phase transition is induced by applying an external magnetic field to a nematic liquid crystal of boardlike colloidal goethite and is due to an interplay between the intrinsic magnetic properties of goethite and the collective effect of liquid crystal formation. It is shown that the intense ochre colour of goethite does not preclude the use of polarization microscopy and interference colours, and that dichroism can give valuable qualitative information on the nature of the phases, their anchoring and their sedimentation and order parameter profiles. We also apply these techniques to study 'nematic-nematic tactoids': nematic droplets sedimenting within a nematic medium with mutually perpendicular orientations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic-field-induced nematic-columnar phase transition in aqueous suspensions of goethite (alpha-FeOOH) nanorods.

Colloidal aqueous suspensions of goethite lath-shaped nanorods form nematic and isotropic phases. We show that they also display a 2D rectangular (c2mm) columnar phase at volume fractions phi larger than 15%. Interestingly, the nematic-columnar first-order transition can also be triggered by applying to the nematic phase a magnetic field of intensity decreasing with phi (1 T at 8.5%; 0.5 T at 1...

متن کامل

Tuning biaxiality of nematic phases of board-like colloids by an external magnetic field.

We study the influence of a magnetic field on the biaxial nematic phase of board-like goethite colloids both experimentally and theoretically. Using synchrotron small angle X-ray scattering techniques we find that applying a magnetic field along the main director of the biaxial nematic phase leads to a clear decrease in biaxiality with increasing magnetic field strength. Above a certain magneti...

متن کامل

تغییرات ساختاری بلورمایع نماتیک آمیخته به نانوکلوئیدهای مغناطیسی

 The stable colloidal dispersions of magnetic nano-particles in nematic liquid crystals are called ferronematics. Their behaviour in magnetic fields depends on various parameters such as anchoring energy, magnetic anisotropy, and shape and volume fraction of the particles. In the present paper, the threshold field is obtained for these colloidal nematics. Then, the influence of magnetic anisotr...

متن کامل

Dispersions of Goethite Nanorods in Aprotic Polar Solvents

Colloidal suspensions of anisotropic nanoparticles can spontaneously self-organize in liquid-crystalline phases beyond some concentration threshold. These phases often respond to electric and magnetic fields. At lower concentrations, usual isotropic liquids are observed but they can display very strong Kerr and Cotton-Mouton effects (i.e., field-induced particle orientation). For many examples ...

متن کامل

Phase behaviour of binary mixtures of diamagnetic colloidal platelets in an external magnetic field.

Using fundamental measure density functional theory we investigate paranematic-nematic and nematic-nematic phase coexistence in binary mixtures of circular platelets with vanishing thicknesses. An external magnetic field induces uniaxial alignment and acts on the platelets with a strength that is taken to scale with the platelet area. At particle diameter ratio λ = 1.5 the system displays paran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 23 19  شماره 

صفحات  -

تاریخ انتشار 2011